PENGEMBANGAN EARLY WARNING SYSTEM UNTUK DELISTING SAHAM SYARIAH MENGGUNAKAN SUPPORT VECTOR MACHINE (SVMs)
Abstract
This study aim to produce Early Warning System in predicting the occurrence of delisting in Islamic stocks by using Support Vector Machines (SVM). The sample used in this research are companies listed on the Indonesian Syariah Stock Index (ISSI) for the period of 2012 - 2018. With the variables used in this research: Turn Over Asset, Long Term Debt, Interest Coverage, Debt to Equity, Quick Ratio, ROA, ROE Leverage, Current Ratio, ROIC. The population of this study is 335 Islamic stocks registered with ISSI. There are 102 companies which consists of listed and delisted companies from sharia shares as comparison for the sample data. The Method applied in this study is Purposive Sampling for The sampling technique. From the result found that accuracy rate of the best SVM models is SVM 4 models with 100% accuracy
References
Kaminsky, G. and C. Reinhart, (2000). “On Crises, Contagion, and Confusion”; Journal of International Economics; 51(1), pp. 145–68, June.
Kaminsky, G., S. Lizondo and C. Reinhart (1998). “Leading Indicators of Currency Crises”, IMF Staff Papers, 45, No. 1, pp. 1–48.
Kaminsky, G. and C. Reinhart (1999). “The Twin Crises: The Causes of Banking and Balance-of-Payments Problems”, American Economic Review; 89(3), pp. 473–500, June.
Berg, A. and C. Pattillo (1999a). “Are Currency Crises Predictable? A Test” IMF Staff Papers; 46(2), June, pp. 107–38.
Berg, A. and C. Pattillo (1999b). “Predicting Currency Crises: The Indicators Approach and an Alternative” Journal of International Money and Finance; 18(4), August, pp. 561–86.
Berg, A., E. Borenszstein and C. Pattilo (2004). ‘’Assessing Early Warning Systems: How They Worked in Practice” IMF Working Paper, WP/04/52, March
Bhattacharya, Biswa Nath (2009) Early Warning System for Economic and Financial Risks in Kazakhstan, https://www.researchgate.net/publication/228126986.
Fahmi, Irham (2012) Pengantar pasar modal, Panduan bagi para praktisi dan akademisi dalam memahami pasar modal Indonesia. Alfabeta. Bandung 2012.
M. Doganay, and R.Aktas, (2009) “Detecting stock-price manipulation in an emerging market: The case of Turkey,” Expert Syst. Appl., vol. 36, no. 9, 2009, pp. 11944-11949.
Rio, Rita (2009). “Penerapan prinsip syariah di pasar modal”: Telaah bisnis, Volume 10, No.1.
Firmansyah, Egi Arvian. (2017) Seleksi Saham Syariah: Perbandingan antara Bursa Efek Indonesia dan Malaysia, Jurnal Inspirasi Bisnis dan Manajemen, Vol 1, (1), 2017, 0.
Otoritas jasa Keuangan (2017), Perkembagan Pasar modal syariah: Sinergi Menuju Pasar Modal Syariah yang Lebih Besar dan Berkembang. Laporan Perkembangan pasar modal syariah.
Fatmawati, Mila. (2012) Penggunaan The Zmijewski Model, The Altman Model, Dan The Springate Model Sebagai Prediktor Delisting. Jurnal Keuangan dan Perbankan, Vol.16, No.1 Januari 2012, hlm. 56–65.
Hadi, Syamsul & Anggraeni, Atika (2008) Pemilihan Prediktor Delisting Terbaik (Perbandingan Antara The Zmijewski Model, The Altman Model, Dan The Springate Model) Jurnal Akuntansi Dan Auditing Indonesia (Jaai)No.2 2008.
Hwang, Tae & Kang, Sun Min & Ji Jin, Shun (2014), A delisting prediction model based on nonfinancial information. Asia-Pacific Journal of Accounting & Economics, 2014 Vol. 21, No. 3, 328–347.
Zhou, Ligang (2013) ”Predicting the removal of special treatment or delisting risk warning for listed company in China with Adaboost”, Procedia Computer Science 17 ( 2013) 633 – 640.
Fungacova, Zuzana. & Hanousek, Jan (2011). Determinants of firm delisting on the prague stock exchange. Prague economic papers, 4, 2011.
Benny, Leslie & Yanthi Hutagaol. (2016) Empirical Investigation Of Determinant Factors Of Company Delisting: Evidence From Indonesia. Journal of Applied Finance and Accounting, 6(1), 25-66.
Hartono, Jogiyanto. (2008). Teori Portofolio Dan Analisis Investasi. BPFE,Yogyakarta.
Siddaiah, Thummuluri (2011) Financial Service, Dorling Kinderslay, Noida India.
Cortes, Corinna. And Vapnik, Vladimir (1995) Support-Vector Networks 1995 Kluwer Academic Publishers, Boston.
Anwar, saiful. Rohmansyah, dadang. Pramono, sigit. and Watanabe, kenji. (2010), Treating return of mudharabah time deposit as investment instrument A utilization of artificial neural networks (ANNs) Humanomics Vol. 26 No. 4, 2010 pp. 296-30.
Anwar, Saiful. (2015). “Handbook Of Research On Islamic Banking And Finance: An Introduction of design Science Research Metodology, An Engineering Approach”, C.V Penebar kata, Ciputat tangerang.