Data Analisis Permintaan Barang dengan Metode Peramalan
Data Analysis for Demand Parts with Forecasting Method
Abstract
Di situasi saat ini dimana era pandemic operasional perusahaan berjalan dengan kekuatan organisasi dengan para pelaku manajemen yang berpikir keras bagaimana mengelola permintaan serta kebutuhan dan memasok kebutuhan kepada para pelanggannya. Penulisan artikel ini membahas tentang pengelolaan manajemen perusahaan dengan menggunakan metode peramalan permintaan dalam memenuhi permintaan para intermiten produk suku cadang pada sebuah perusahaan otomotif, dengan sebuah penelitian permintaan intermiten perusahaan yang menunjukkan pola fluktuatif, adanya permintaan dalam jangka waktu tertentu, dan penelitian ini menguji 2 metode peramalan dalam memprediksi permintaan suku cadang yaitu metode Metode ABC, Simple Exponential Smoothing (SES) dan Moving Average Exponential Smoothing dengan menggunakan data permintaan 2017-2020 untuk meramalkan permintaan pada tahun 2021. Kinerja metode peramalan ditentukan berdasarkan mean squared error, dan hasil penelitian ini menunjukkan bahwa penggunaan metode Simple Exponential Smoothing memiliki performansi yang paling baik. Tujuan utama dari penelitian ini adalah untuk membandingkan dan memilih metode peramalan terbaik untuk memprediksi kebutuhan dan permintaan kebutuhan suku cadang perusahaan.
In the current situation where the pandemic era has caused many companies to experience crises, the company's operational activities are carried out with organizational strength that makes management actors think hard in managing the needs and supplying the needs of their customers. This study discusses the management of the company by using the demand forecasting method in meeting the demand for intermittent spare parts products in an automotive company. In this study, the company's intermittent demand trend shows a fluctuating pattern with demand within a certain period of time. This study examines 2 forecasting methods in predicting the demand for spare parts, namely ABC analysis, the Simple Exponential Smoothing (SES) method and the Moving Average Exponential Smoothing using 2017-2020 demand data to forecast demand in 2021. The performance of the forecasting method is determined based on the mean squared error, and the research results This shows that the use of the Simple Exponential Smoothing method has the best performance. The main purpose of this study is to compare and choose the best forecasting method to predict the needs and demands of the company's spare parts needs
References
Adam Hayes, “Supply Chain Management,” Investopedia, 11 August 2019.
Chamid, A.A dan Murti, A. C, “Prioritization of Natural Dye Selection In Batik Tulis Using AHP and TOPSIS Approach,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12 no. 2, p. 129, 2018.
Chamid. A. Abdul dan Surarso, B., “Implementasi Metode AHP dan Promethee Untuk Pemilihan Supplier,” J. Sist. Inf. Bisnis, vol. 02, pp. 13–2015, 2015.
Chopra, Sunil & Meindl, Peter; Supply chain management : strategy, planning, and operation.—5th ed. by Pearson Education, Inc., publishing as Prentice Hall. ISBN-13: 978-0-13-274395-2
Heizer Jay dan Render, Barry. (2016). Operation Management Sustainability And Supply Chain Management 12th.Ed, ISBN 978-0-13-413042-2
https://doi.org/10.1007/978-3-642-55309-7_1
Kurniadi, W, “Pendukung Keputusan Dalam Peramalan Penjualan Ayam Broiler Dengan Metode Trend Moment Dan Simple Moving Average Pada CV. Merdeka Adi Perkasa,”MEDIA Inform. BUDIDARMA, vol. 2, pp. 76–90, 2018.
Montgomery, D. C, Johnson L.A, Gardiner, JS. 1990. Forecasting and Time Series Analysis,McGraw-Hill, Inc, ISBN 0-07-042858-1.
Muller, Max. (2011). Essentials of Inventory Management. Second Edition. AMACOM American Management Association. USA.
Piasecki, D.J., 2009. Inventory management explained: a focus on forecasting, lot sizing, safety stock, and ordering systems. Ops Publishing.
Shekarian, M., & Mellat Parast, M. (2020). An Integrative approach to supply chain disruption risk and resilience management: a literature review. International Journal of Logistics Research and Applications, 0(0), 1–29. https://doi.org/10.1080/13675567.2020.1763935
Shukla, R. K., Garg, D., & Agarwal, A. (2018). Modelling supply chain coordination for performance improvement using analytical network process-based approach. International Journal of Business Excellence, 14(1), 18–48. https://doi.org/10.1504/IJBEX.2018.088313
Sillanpää, Ilkka. (2015). Empirical study of measuring supply chain performance. Benchmarking An International Journal. 22. 290-308. https://doi.org/10.1108/BIJ-01-2013-0009 .
Silver, E.A. (2008). Inventory Management: An Overview, Canadian Publications, Practical Applications and Suggestions for Future Research. INFOR, 46(1): 15-28.
Singh N., Vaish B., Singh S.R., A collaborative strategy for three echelon supply chain system with ramp type demand, deterioration, and inflation, Operations Research And Decision, 2014, Vol 3, 77-100.
Stadtler, H. (2015) Supply Chain Management: An Overview. In: Supply Chain Management and Advanced Planning, Springer, Berlin, Heidelberg, 3-28.
Wisner, J. D., Tan, K.-C., & Leong, G. K. (2012). Principles of supply chain management: A Balance Approuch. In Jack W. Calhoun (Ed.), Principles of Supply Chain Management (Third Edit). Cengage Learning. https://doi.org/10.1201/b17864
Copyright (c) 2022 EKOMABIS: Jurnal Ekonomi Manajemen Bisnis

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Copyright of this journal is possession of Editorial Board and Journal Manager, by the knowledge of author, whilst the moral righ of the publication belongs to the author.
- Legal formal aspcect of journal publication assessibility refers to Creative Commons Atribut-Non Commercial-No Derivatef (CC BY-NC-SA), implies that publication can be used for non-commercial purposes in its original form.
- Every publications are open access for educational purposes, research, and library. Other that the aims mentioned aboe, editorial board is not responsible for copyright violation.